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INVARIANT BOUNDARY-VALUE PROBLEMS

OF AN OPTIMALLY CONTROLLED BOUNDARY LAYER

UDC 532.526K. G. Garaev and V. A. Ovchinnikov

The group properties of equations of the variational problem on finding a continuous law for velocity
distribution of liquid injection into an incompressible laminar boundary layer in a planar case, which
ensures the minimum friction force acting on the airfoil, are considered. It is shown that the optimal
injection velocity on a wedge with x = 0 is finite.
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In viscous liquid or gas flows, an important problem is the reduction of the drag force, which, for streamlined
bodies, is mainly determined by the total friction drag force. One method of solving this problem if the control of
local gradients of the streamwise velocity on the wetted surface by means of injection of a liquid into the boundary
layer. Since the energy resources (total flow rate of the liquid, power of the control system) are limited, there arises
the problem of optimal boundary-layer control, which was first posed in [1]. In [2], the first integral for the conjugate
system with respect to the Lagrange multipliers was found using the theory of invariant variational problems and
Lie–Ovsyannikov infinitesimal apparatus [3, 4]. In [5], the group properties of equations of planar steady motion
of a viscous incompressible liquid in an optimally controlled boundary layer were considered [1, 6]. In the present
work, we performed a group classification of these equations, identified classes of invariant boundary-value problems
for the case of the power distribution of velocity at the boundary-layer edge, and constructed the corresponding
self-similar solutions.

According to [6, 7], finding the law for velocity distribution of liquid injection into a laminar boundary layer,
providing the minimum value of the total friction force acting on the airfoil
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reduces to joint integration of the following equations:
— the Prandtl equations
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u(x, 0) = 0, v(x, 0) = vw(x), u(x,∞) = Ue(x); (3)
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— the Euler–Lagrange–Ostrogradskii equations
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with the boundary conditions

λ1(x, 0) = −ρ, λ1(x,∞) = λ2(x,∞) = 0, λ1(xend, y) = 0 (y > 0), λ2(xend, y) = 0.

Here u and v are the projections of the velocity vector onto the x axis directed along the body contour and the
y axis directed along the external normal to the wetted surface, respectively, xend is the abscissa of the end of the
injection section, ρ, ν, and µ are the density and kinematic and dynamic viscosity of the liquid, the subscripts “e”
and “w” refer to quantities at the boundary-layer edge and on the body surface, u0(y) is the initial velocity profile,
Ue(x) and u0(y) are specified functions, and λ1, λ2, and α are the Lagrangian multipliers.

The optimal control is found using the formula vw(x) = αλ2(x, 0).
We use the first integral of the conjugate system (4), which was found in [2]. Using this integral, system (4)

can be replaced by a system of the form
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equivalent to one second-order parabolic equation
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with the initial condition
λ2(xend, y) = 0 (y > 0) (6)

and boundary conditions
∂λ2(x, 0)

∂y
= −ρ ∂u(x, 0)

∂y
, λ2(x,∞) = 0. (7)

We find the main group of continuous transformations [3, 4] admitted by system (1), (5). In the case
considered, the problem of group analysis reduces to the problem of group classification with respect to the arbitrary
element θ(x) ≡ Ue dUe/dx. The groups of transformations admitted by system (1), (5) for various specializations
of the arbitrary element are determined by their Lie algebras of infinitesimal operators of the form
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Constructing the constitutive equations and their common solution, we obtain

ξx = A1x+A2, ξy = B1y +B(x), ξu = (A1 − 2B1)u, ξv = −B1v + u
dB

dx
, ξλ2 = D1λ2 +D2, (8)

where A1, A2, B1, D1, and D2 are constants, and B(x) is an arbitrary function. The constants A1, A2, and B1 are
related to the arbitrary element θ(x) by the constitutive equation
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dθ
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= (A1 − 4B1)θ, (9)

which plays the role of a classifying equation.
For the arbitrary function θ(x), Eq. (9) is satisfied only if A1 = A2 = B1 = 0.
Hence, the kernel of the main Lie algebras of system (1), (5) is formed by the operators
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The results of group classification are listed in Table 1 (X3 = ∂/∂x, X4 = x ∂/∂x + u ∂/∂u, and X5 =
y ∂/∂y − 2u ∂/∂u− v ∂/∂v).

Further, we consider the power distribution of velocity at the boundary-layer edge Ue = c0x
m.

Let m 6= 0. In this case, for the boundary conditions (3), (7) to be invariant with allowance for (9), the
following conditions should be satisfied:

B = A2 = 0, 2B1 = (1−m)A1, D1 = A1 − 2B1, D2 = 0,
(10)

A1(v′w(x) + (1−m)vw(x)/(2x)) = 0.
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TABLE 1

θ(x) Operators

0 X3, X4, X5

±ex 4X3 −X5

1 X3, 4X4 +X5

±xn 4X4 − (n− 1)X5, n 6= 0

The latter relation for the arbitrary function vw(x) is satisfied for A1 = 0, which corresponds to the trivial case of
an identical transformation. Assuming that A1 6= 0, we obtain vw(x) = cx(m−1)/2.

Thus, for the boundary-value problem (1), (3), (5), (7) to be an invariant boundary-value problem [8],
relations (8) and (10) should be satisfied. If the latter is true, the boundary-value problem is written in terms of
invariants of the group represented by the operator
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Let m = 0. For invariance of the boundary conditions (3) and (7), the following relations should be satisfied:

B = 0, 2B1 = A1, D1 = D2 = 0, (A1x+A2)v′w(x) +A1vw(x)/2 = 0.

For A1 6= 0, the latter equation yields vw(x) = c/
√
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the first of them being a particular case of operator (11) for m = 0.
In both cases considered, the invariants of the initial condition (6) is observed for A1 = 0 only; hence,

it is impossible to find any invariant solutions of rank 1 [3] satisfying all the boundary conditions. If the initial
condition (6) is set for x = 0, it is invariant with respect to transformations corresponding to operator (11), and the
variational problem (1)–(3), (5)–(7) admits a self-similar solution by virtue of automatic satisfaction of the initial
condition (2) for the Prandtl equations [9]. Thus, in constructing invariant solutions, we do not require invariance
of condition (6).

The invariant solution u = u(y), v = v(y), λ2 = λ2(y) corresponding to the transfer operator X = ∂/∂x

allows obtaining an exact solution of the Prandtl equations (1) for uniform suction of the liquid from the boundary
layer

v(y) = v0 = const < 0, u(y) = Ue[1− exp (v0y/ν)],

which is an exact solution of the Navier–Stokes equations in the planar case [10], and also a solution of the conjugate
equation (5) λ2(x) = ρUe exp (v0y/ν), which satisfies the boundary conditions (7).

The invariant solution constructed using operator (11) admitted for all values of the parameter m can be
written as
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mΦ′(η), v = −
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The boundary-value problem (1), (3), (5), (7) on the solution of the form (12) can be reduced to the following
boundary-value problem for a system of ordinary differential equations:

Φ′′′ + ΦΦ′′ + β(1− Φ′2) = 0, β = 2m/(m+ 1); (13)

Φ(0) = cw, Φ′(0) = 0, Φ′(∞) = 1; (14)

Φ′′′g′ − Φ′′g′′ − βΦ′Φ′′g − β(1− Φ′2)g′ = 0; (15)

g′(0) = −ρc0Φ′′(0)/c1, g(∞) = 0. (16)
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Fig. 1. Lagrangian multiplier λ2 as a function of the streamwise coordinate x
for m = 1 and y = 0 (solid curves) and y = 0.2 (dashed curves); curves 1 and 2
show the self-similar solution and the difference solution, respectively.

The solution of the Falkner–Skan equation (13) under the boundary conditions (14) with cw = 0 is known
as the Hartree solution [11]. Using this solution, we find the solution of the boundary-value problem (15), (16).

In (12), (15), and (16), we pass to dimensionless quantities: x̄ = x/l, ȳ = y
√

Rer/l, Rer = Url/ν, Ur = Ue(l),
ū = u/Ur, v̄ = v

√
Rer /Ur, λ̄2 = λ2/(ρUr), and ḡ = c1g/(ρc0). Then, relations (15) and (16) are written in the

following form (hereinafter, the bar over dimensionless quantities is omitted):

Φ′′′g′ − Φ′′g′′ − βΦ′Φ′′g − β(1− Φ′2)g′ = 0; (17)

g′(0) = −Φ′′(0), g(∞) = 0. (18)

As a result of solving the two-point boundary-value problem (17), (18) by the shooting method, we obtained
the values g(0) = 1, 0.75649, 0.70304, 0.67965, 0.66656, and 0.65821 form = 0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively.

Figure 1 shows the dependences

λ2(x, y) = xmg(η) (19)

for the case m = 1, cw = 0 with fixed values of y and the dependences λ2(x, y) obtained by solving the initial-
boundary problem (1)–(3), (5)–(7) with vw(x) = 0 by the difference method for the same values of m and y. It
follows from Fig. 1 that the self-similar solution (19), which obviously does not satisfy the initial condition (6),
in the vicinity of the point x = 0 is close to the exact solution obtained by the difference method and infinitely
approaches the latter as x→ 0. Note, for m = 1, the self-similar solution (19) has no singularity in the origin.

Figure 2 shows the self-similar solution (19) for cw = 0 and the exact difference solution for vw(x) = 0.
A comparison of these solutions shows that the self-similar solution approximates the exact solution for values of x
close to zero and almost coincides with the exact solution already at x = 0.004. This conclusion does not refer to
the value x = 0, since the self-similar solution in the case considered has a singularity in the origin. Nevertheless,
for m = 0, Eq. (17) is solvable in a finite form with respect to g(η): g(η) = aΦ′(η)+ b, where a and b are integration
constants. We find a and b by satisfying the boundary conditions (18): aΦ′′(0) = −Φ′′(0) and b = −a. For
Φ′′(0) 6= 0, we obtain a = −1 and b = 1 [for Φ′′(0) = 0, the friction stress on the wall vanishes, and the problem of
friction minimization makes no sense]. Thus, we have g(η) = 1− Φ′(η) and, hence,

λ2 = 1− Φ′(η)

or, in a dimensional form,

λ2 = ρ(U∞ − u). (20)

Note, this expression with m = 0 in the general case of an arbitrary structure of the function u(x, y) is an exact
analytical solution of Eq. (5), satisfying the boundary conditions (7).

It is impossible to obtain a numerical solution of the initial-boundary problem (5)–(7) for the conjugate
equation at the point x = 0 for m = 0, which is caused by a singularity present at this point in the solution of
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Fig. 2. Lagrangian multiplier λ2 as a function of the transverse coordinate y for m = 0 and x = 0.014 (a),
0.009 (b), and 0.004 (c); curves 1 and 2 refer to the self-similar solution and difference solution, respectively.

the Prandtl equations. A comparison of this solution with the self-similar solution in the vicinity of the point
x = 0 (for m = 1, also at the point x = 0 itself) and an analysis of solution (20) allow us to conclude that the
function λ2 and, hence, vw(x) take finite values at x = 0, namely, λ2(0, 0) = 1 and vw(0) = ρ

√
Rer α for m = 0 and

λ2(0, 0) = vw(0) = 0 for m ∈ (0; 1]. This result is principally important for implementation of the optimal injection
law and correct satisfaction of the restriction on the control-system power.
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